Summer Cooling

Designing a Fan and Pad System

- Air exchange rate (cfm’s) required
 - “standard” recommendation is 1 exchange per minute
 - remove and replace entire ft³ volume of greenhouse
 - means you must calculate greenhouse volume
 - the 8 cfm/ft² of floor area is no good! --why not?
Summer Cooling

Designing a Fan and Pad System

- Modify “standard” cfm as needed:
 - account for density of air (elevation)
 - use Table 4-1 to select F_{ELEV}
 - account for maximum light
 - use Table 4-2 to select F_{LIGHT}
Summer Cooling

Designing a Fan and Pad System

- Modify “standard” cfm as needed:
 - account for maximum temperature rise
 - use Table 4-3 to select F_{TEMP}
 - multiply $F_{\text{ELEV}} \times F_{\text{LIGHT}} \times F_{\text{TEMP}}$ to get F_{HOUSE}
 - account for short fan-to-pad distances (less than 100 ft)
 - use Table 4-4 to select F_{VEL}
 - multiply “standard” cfm by the largest factor-- F_{HOUSE} OR F_{VEL}
Summer Cooling

Designing a Fan and Pad System

- Fan selection and placement
 - total fan cfm = calculated cooling requirements
 - fans should be = in cfm’s
 - usually placed on the wall opposite the pads
 - max distance between fans and pads = 200 ft
 - place fans close to plant height
 - no more than 25 ft between fans; evenly spaced
Summer Cooling

Designing a Fan and Pad System

- Fan selection and placement
 - individual fan cfm = total cfm ÷ number of fans
 - select fan capacity at 0.1” static pressure (0.05” for slant-wall-housing fans)
 - fans should be housed on the leeward side
 - exhaust on the windward side = 10% greater capacity
 - 50 feet minimum from exhaust to the pads of an adjacent greenhouse
Summer Cooling

Designing a Fan and Pad System

• Fan selection and placement
 – if fans from two adjacent greenhouses exhaust towards each other, greenhouses should be at least 15 feet apart
 • stagger fans so they do not blow directly into each other
 – give exhaust fans clearance of at least 1.5x fan diameter between fans and adjacent buildings
 • a 24” diameter fan needs 3 feet clearance between the fan and the adjacent building
Summer Cooling

Designing a Fan and Pad System

• Pad types and specifications
 – two majors types of pads--excelsior (Aspen) pads and cellulose (Kool-Cel) pads
 – cellulose pads are more expensive, but last much longer (10 years as compared to about 2 max for excelsior pads)
 – excelsior pads require a wire mesh frame for support while cellulose pads are self-supporting
Summer Cooling

Designing a Fan and Pad System

- Pad types and specifications
 - supply correct fpm velocity for proper evaporation
 - divide the total cfm by pad velocity (fpm) to calculate the required ft2 of pad area
 - supply correct water flow rate (gpm/ft) to maintain adequate pad moisture
 - match your pump capacity to the total flow rate needed
Summer Cooling

Designing a Fan and Pad System

- Pad types and specifications
 - supply correct sump (holding tank) capacity to hold enough water to circulate through the pad system
 - capacity is based on ft² of pad area
<table>
<thead>
<tr>
<th>Pad type</th>
<th>Pad velocity (fpm)</th>
<th>Water flow rate (gpm/ft)</th>
<th>Sump capacity (gal/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” to 2 1/4” aspen</td>
<td>150</td>
<td>0.30</td>
<td>0.50</td>
</tr>
<tr>
<td>4” thick cellulose</td>
<td>250</td>
<td>0.50</td>
<td>0.75</td>
</tr>
<tr>
<td>6” thick cellulose</td>
<td>350</td>
<td>0.75</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Summer Cooling

Designing a Fan and Pad System

- Pad types and specifications
 - run pads the entire length of the wall
 - some water must be “bled off” to prevent salt build up
 - use 0.05 gpm/1000 cfm of fan capacity OR
 - bleed off 1% to 2% of the gpm pumped onto pads
 - use algaecides such as sodium hypochlorite (bleach), bromine (Agribrom), quaternary ammonium chloride salts (PT 2000 or Green-Shield), and benzylkonium chloride (Physan 20)
Summer Cooling

Designing a Fan and Pad System

- Pad types and specifications
 - distribute water via a sump pump and a delivery tube on top of the pads
 - maximum length of delivery tube (per pump) is 100 feet
- 50 feet in EITHER DIRECTION from the pump; situate sumps and pumps in the middle of distribution pipes
- water leaves the delivery tube through \(\frac{1}{8}'' \) diameter holes in the top of pipe at 3” spacings
Summer Cooling

Designing a Fan and Pad System

• Pad types and specifications
 – spray water upward, against an impingement cover
 – uniform film should flow onto the pad top edges
 – collection gutter at bottom returns water to sump
 – use fill line with float valve for proper sump volume